ICD Discrimination Algorithms
How Do They Work?

Ji-Hae Yun, RN
Certified Cardiac Device Specialist by IBHRE
Asan Medical Center, Seoul Korea
EGM of A.Fib with fast ventricular response

Case 1
EGM of Sinus Tachycardia

Case 2

THERAPY SEQUENCE (continued)

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Energy (J)</th>
<th>Charge Time (sec)</th>
<th>Waveform</th>
<th>Pathway</th>
<th>Delivered Energy (J)</th>
<th>Impedance (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT Rx 2: CV</td>
<td>0.1 - 10.0</td>
<td>1.95</td>
<td>BIPHASIC</td>
<td>AX:B</td>
<td>9.9</td>
<td>62</td>
</tr>
<tr>
<td>VT Rx 3: CV</td>
<td>0.3 - 36.0</td>
<td>7.11</td>
<td>BIPHASIC</td>
<td>AX:B</td>
<td>28.8</td>
<td>54</td>
</tr>
<tr>
<td>VT Rx 4: CV</td>
<td>1.1 - 36.0</td>
<td>6.63</td>
<td>BIPHASIC</td>
<td>D:A:AX</td>
<td>29.6</td>
<td>59</td>
</tr>
<tr>
<td>VT Rx 5: CV</td>
<td>1.1 - 30.0</td>
<td>6.61</td>
<td>BIPHASIC</td>
<td>AX:B</td>
<td>29.5</td>
<td>59</td>
</tr>
<tr>
<td>VT Rx 6: CV</td>
<td>1.1 - 30.0</td>
<td>6.72</td>
<td>BIPHASIC</td>
<td>D:A:AX</td>
<td>29.5</td>
<td>59</td>
</tr>
</tbody>
</table>
Introduction

Inappropriate therapy

- Incidence: 20 to 40%
- Psychological adverse effect
- Longevity
- Atrial fibrillation, Supraventricular tachycardia including Sinus tachycardia and abnormal sensing

<table>
<thead>
<tr>
<th>Trial</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCD-HeFT</td>
<td>32%</td>
</tr>
<tr>
<td>MADIT II</td>
<td>36.4%</td>
</tr>
<tr>
<td>AVID</td>
<td>21% of patients</td>
</tr>
</tbody>
</table>
Inappropriate therapy

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Fibrillation</td>
<td>44%</td>
</tr>
<tr>
<td>Other SVT</td>
<td>36%</td>
</tr>
<tr>
<td>Abnormal Sensing</td>
<td>20%</td>
</tr>
</tbody>
</table>
Incidence of Inappropriate ICD therapy

SVT discrimination

- Prevent detection of tachyarrhythmias caused by the presence of an SVT
- Prevent inappropriate, unnecessary therapy due to rapid SVT conduction
SVT discrimination

- RR Interval
- Regularity/Stability
- Onset
- VEGM morphology
- PR patterns/relationships
- PR dissociation

* VEGM: ventricular electrocardiogram
RR Interval

- **Purpose**
 -- Identify high ventricular rates

- **Detection Zone**

<table>
<thead>
<tr>
<th></th>
<th>VF Detection Zone</th>
<th>FVT Detection Zone</th>
<th>VT Detection Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>VF On</td>
<td>FVT via VF</td>
<td>VT On</td>
</tr>
<tr>
<td>Initial</td>
<td>18/24</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Redetect</td>
<td>9/12</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>V Interval [Rate]</td>
<td>320 ms (188 bpm)</td>
<td>260 ms (231 bpm)</td>
<td>400 ms (150 bpm)</td>
</tr>
</tbody>
</table>
The minimum ventricular intervals at which the device applies SVT discrimination
Regularity/Stability

- **Purpose**
 -- Discrimination of monomorphic VT (regular cycle lengths) from rapid AF (irregular cycle lengths)

- **Potential weakness**
 -- Atrial flutter has regular RR intervals
 -- Underdetection of VT with irregular RR intervals
Stability

Activated when the VT counter = 3

Stability 50ms

Varies >50 ms from previous 3

480ms - 440ms = 40ms
450ms - 440ms = 10ms
510ms - 440ms = 60ms

60ms > Stability 50ms

Unstable, A.Fib

Current Interval

In Medtronic devices
Regularity in PR Logic

- **Ventricular Cycle Length (Irregular)**
 - Calculates the percentage of how often the two most frequent intervals occur

\[
\frac{8}{18} = 44\%
\]

For Atrial Fib must be \(< 50\%\); For Other 1:1 SVT must be \(> 25\%\)

In Medtronic devices
Regularity in PR Logic

- Ventricular Cycle Length (Regular)

For VT $\geq 75\%$

$\frac{14}{18} = 77\%$

In Medtronic devices
Interval Stability

- 700ms: 2nd longest
- 402ms: 2nd shortest

700ms - 402ms = 298ms

298ms > Stability 80ms

Unstable, A.Fib

In St. Jude Medical devices
Interval Stability

- 387ms: 2nd longest
- 370ms: 2nd shortest

387ms − 370ms = 17ms

17ms < Stability 80ms

Stable, VT

In St. Jude Medical devices
Interval Stability (w/AVA)

Atrial Ventricular Association Delta

AVA Setting: 40ms

160ms – 150ms = 10ms

10ms < AVA 40ms

160: 2nd longest AV Interval
150: 2nd shortest AV Interval

Association, SVT

In St.Jude Medical dual chamber devices
Interval Stability (w/ SIH)

- **Count sinus intervals** in ‘Interval Stability Window’
- **SVT = Sinus intervals > SIH delta(1~8)**

In St. Jude Medical single chamber devices
A.Fib rate threshold: 200 bpm

A Rate > 200 bpm AND V rate Stability (> 20ms)

No → VT

Yes → SVT (AF)
Stability

Sensitivity & Specificity values for different stability values

- **Purpose:**
 - Identify sudden ventricular rate changes

- **Potential weakness**
 - May miss VT arising during sinus tachycardia
 - Sudden onset A.Fib, AT, PSVT

![Graph showing ventricular tachycardia and sinus tachycardia with time and rate axes]
Onset

- Average of previous 4 beats \times programmed Onset %
- ? Averages of 4 Tachycardia beats of
- VT if Tachy average is less than 430ms in this example

In Medtronic devices

Onset:

- 81%

530ms \times 81% = 430ms

430ms \neq or \geq 460ms

\Rightarrow Not sudden Onset
Sudden Onset

Compared to previous interval as soon as get in VT zone.

How suddenly did the rate change?

In St. Jude Medical devices.
Sudden Onset

Any of intervals (322ms) > Onset 200ms

Sudden onset, VT

In St. Jude Medical devices
Onset

VEGM morphology

- **Purpose:**
 -- Abnormal ventricular EGM morphology against template may indicate ventricular tachyarrhythmias

- **Potential weakness**
 -- Confounded by conduction aberrancy or changes in normal VEGM morphology

VEGM: ventricular electrocardiogram
Vector Timing and Correlation

NSR or SVT

VT

Rate

Shock

NSR

VT

Align Peaks

In Guidant devices

NSR: normal sinus rhythm
Morphology Discrimination

- Sequence of Peaks
- Number of Peaks
- Area Under Peaks
- Polarity
- Signal Amplitude

In St. Jude Medical devices
Morphology Discrimination

\[X = \text{Non Match with Template} \]
\[\checkmark = \text{Match with Template} \]

Too many “non-matches” = VT

In St.Jude Medical devices
Wavelet

- Stores a template of a normal QRS wave
- Detect VT if 6 out of 8 do not match

% difference compared against:
Match Threshold Value

In Medtronic devices
VEGM morphology

- Inaccurate Template
- Correlation patient position
- Correlation post shock delivery
- Correlation pharmacology changes
- Rate-Related Aberrancy
- Inappropriate Classification of VT as SVT
Purpose:
-- Consistent AV pattern/relationship usually indicates SVT

Potential weakness
-- Atrioventricular reentrant tachycardia and VT with 1:1 retrograde conduction

A: atrial, V: ventricular
PR patterns/relationships

- Defining a rhythm
 -- Series of V-V Patterns
- Atrial event classification
- 19 Pattern Codes (A~Z)

In Medtronic devices

VS
Junctional Retrograde Antegrade

AFib/AFlutter
On
Sinus Tach
On
Other 1:1 SVTs
On
PR dissociation

- **Purpose:**
 -- AV dissociation may indicate VT

- **Potential weakness**
 -- VT with 1:1 retrograde conduction
AV Interval

- The rhythm is classified into the Sinus Tach rate branch.
- Same algorithm as AVA

2nd longest - 2nd shortest AV interval

\[\geq AV \text{ interval Value}(40\text{ms}) \]

\[\Rightarrow VT \]

In St. Jude Medical devices
A:V Dissociation

- Provides evidence that sensed atrial events are not related to sensed ventricular events

Does any criterion satisfy > 4/8 VV interval?

- VV interval has no atrial sensed events
- OR
- Current AV interval differs from the average of the previous 8 by more than 40 msec

No
AV Associated

Yes
AV Dissociated

Identify Rhythm as AV Dissociated

In Medtronic devices
SVT discrimination in Redetection

Purpose

- For SVT after appropriate therapy of VT
- To classify SVT correctly after inappropriate therapy
SVT discrimination in Redetection

Each Manufacturer

- Biotronik and ELA
 - Equivalent initial detection and redetection
 - Except onset
- Guidant
 - Permit stability after shocks, but not after ATP
- Medtronic
 - Only single chamber stability applies
- St. Jude Medical
 - Do not apply any discriminator
Dual chamber SVT discrimination

Dual Chamber

A > V
- Ventricular morphology
- Ventricular interval stability
- AV association

Conducted AFib/AFlu

VT + AFib/AFlu

A = V
- Ventricular morphology
- AV interval
- Chamber of onset
- Response to ATP*

SVT (1:1 AV conduction)

VT (1:1 VA conduction)

V > A

VT

Analyze atrial and ventricular rates

<table>
<thead>
<tr>
<th>The name of Discrimination</th>
<th>Rate Branch (St. Jude Medical)</th>
<th>PR Logic (Medtronic)</th>
<th>Rhythm ID (Guidant)</th>
<th>PARAD+ (ELA)</th>
<th>SMART (Biotronik)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR stability</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>XX</td>
<td>X</td>
</tr>
<tr>
<td>Sudden onset</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VEGM morphology</td>
<td>XX</td>
<td></td>
<td>XX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A rate vs V rate</td>
<td>XX</td>
<td>X</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>PR patterns</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR association</td>
<td>XX</td>
<td>XX</td>
<td></td>
<td>XX</td>
<td>XX</td>
</tr>
</tbody>
</table>

x = algorithm uses this discrimination
X : A rate > V rate
X : A rate = V rate
Summary

- An ideally programmed device should provide
 - Detection and treatment for true VT (sensitivity) as well as discern SVT and inhibit inappropriate therapies (specificity)